direct product, p-group, metabelian, nilpotent (class 4), monomial
Aliases: C2×C16⋊C22, C16⋊C23, D8⋊2C23, D16⋊3C22, C8.13C24, Q16⋊2C23, C23.53D8, SD32⋊1C22, M5(2)⋊5C22, (C2×C4).54D8, C4.75(C2×D8), C8.37(C2×D4), (C2×D16)⋊12C2, (C2×C16)⋊3C22, (C2×SD32)⋊4C2, (C2×C8).147D4, C4○D8⋊7C22, (C2×D8)⋊52C22, (C22×D8)⋊21C2, (C2×M5(2))⋊3C2, C4.19(C22×D4), C2.28(C22×D8), C22.78(C2×D8), (C2×C8).291C23, (C2×Q16)⋊50C22, (C22×C4).532D4, (C22×C8).294C22, (C2×C4○D8)⋊27C2, (C2×C4).876(C2×D4), SmallGroup(128,2144)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 532 in 200 conjugacy classes, 92 normal (20 characteristic)
C1, C2, C2 [×2], C2 [×8], C4 [×2], C4 [×2], C4 [×2], C22, C22 [×2], C22 [×22], C8 [×2], C8 [×2], C2×C4 [×2], C2×C4 [×4], C2×C4 [×5], D4 [×17], Q8 [×3], C23, C23 [×11], C16 [×4], C2×C8 [×2], C2×C8 [×4], D8 [×6], D8 [×7], SD16 [×4], Q16 [×2], Q16, C22×C4, C22×C4, C2×D4 [×11], C2×Q8, C4○D4 [×6], C24, C2×C16 [×2], M5(2) [×4], D16 [×8], SD32 [×8], C22×C8, C2×D8, C2×D8 [×6], C2×D8 [×3], C2×SD16, C2×Q16, C4○D8 [×4], C4○D8 [×2], C22×D4, C2×C4○D4, C2×M5(2), C2×D16 [×2], C2×SD32 [×2], C16⋊C22 [×8], C22×D8, C2×C4○D8, C2×C16⋊C22
Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D8 [×4], C2×D4 [×6], C24, C2×D8 [×6], C22×D4, C16⋊C22 [×2], C22×D8, C2×C16⋊C22
Generators and relations
G = < a,b,c,d | a2=b16=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b7, dbd=b9, cd=dc >
(1 29)(2 30)(3 31)(4 32)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(2 8)(3 15)(4 6)(5 13)(7 11)(10 16)(12 14)(17 25)(18 32)(19 23)(20 30)(22 28)(24 26)(27 31)
(2 10)(4 12)(6 14)(8 16)(18 26)(20 28)(22 30)(24 32)
G:=sub<Sym(32)| (1,29)(2,30)(3,31)(4,32)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,25)(18,32)(19,23)(20,30)(22,28)(24,26)(27,31), (2,10)(4,12)(6,14)(8,16)(18,26)(20,28)(22,30)(24,32)>;
G:=Group( (1,29)(2,30)(3,31)(4,32)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,25)(18,32)(19,23)(20,30)(22,28)(24,26)(27,31), (2,10)(4,12)(6,14)(8,16)(18,26)(20,28)(22,30)(24,32) );
G=PermutationGroup([(1,29),(2,30),(3,31),(4,32),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(2,8),(3,15),(4,6),(5,13),(7,11),(10,16),(12,14),(17,25),(18,32),(19,23),(20,30),(22,28),(24,26),(27,31)], [(2,10),(4,12),(6,14),(8,16),(18,26),(20,28),(22,30),(24,32)])
Matrix representation ►G ⊆ GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
5 | 12 | 0 | 0 | 0 | 0 |
6 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 16 | 16 | 15 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 14 | 3 | 0 | 0 |
0 | 0 | 9 | 6 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
11 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 3 | 3 | 6 | 6 |
0 | 0 | 5 | 5 | 14 | 11 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 16 | 16 | 0 | 16 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[5,6,0,0,0,0,12,1,0,0,0,0,0,0,16,0,14,9,0,0,16,0,3,6,0,0,16,1,0,0,0,0,15,0,0,1],[1,11,0,0,0,0,0,16,0,0,0,0,0,0,0,1,3,5,0,0,1,0,3,5,0,0,0,0,6,14,0,0,0,0,6,11],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,16,0,0,0,1,0,16,0,0,0,0,16,0,0,0,0,0,0,16] >;
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | ··· | 2K | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | 8E | 8F | 16A | ··· | 16H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 16 | ··· | 16 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | ··· | 8 | 2 | 2 | 2 | 2 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D8 | D8 | C16⋊C22 |
kernel | C2×C16⋊C22 | C2×M5(2) | C2×D16 | C2×SD32 | C16⋊C22 | C22×D8 | C2×C4○D8 | C2×C8 | C22×C4 | C2×C4 | C23 | C2 |
# reps | 1 | 1 | 2 | 2 | 8 | 1 | 1 | 3 | 1 | 6 | 2 | 4 |
In GAP, Magma, Sage, TeX
C_2\times C_{16}\rtimes C_2^2
% in TeX
G:=Group("C2xC16:C2^2");
// GroupNames label
G:=SmallGroup(128,2144);
// by ID
G=gap.SmallGroup(128,2144);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,-2,-2,253,1430,1684,851,242,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^16=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^7,d*b*d=b^9,c*d=d*c>;
// generators/relations